f(x) = int1/x^2*sin(2ln(x))dxf(x)=∫1x2⋅sin(2ln(x))dx
= 1/2int2/x^2*sin(2ln(x))dx=12∫2x2⋅sin(2ln(x))dx
u = 2ln(x)u=2ln(x) note u = ln(x^2)u=ln(x2)
du = 2/x dxdu=2xdx
= 1/2int2/x*1/x*sin(2ln(x))dx=12∫2x⋅1x⋅sin(2ln(x))dx
=1/2int1/x*sin(u) du=12∫1x⋅sin(u)du
e^u = x^2eu=x2
e^(1/2u)=xe12u=x
e^(-1/2u) = 1/xe−12u=1x
f(x)=int1/2e^(-1/2u)*sin(u) duf(x)=∫12e−12u⋅sin(u)du
By part :
g(x) =1/2e^(-1/2u)g(x)=12e−12u
g'(x)=-1/4e^(-1/2u)
h'(x)=sin(u)
h(x)=-cos(u)
int1/2e^(-1/2u)*sin(u) du=-[1/2e^(-1/2u)cos(u)]-int1/4e^(-1/2u)cos(u)du
by part again :
g(x) = 1/4e^(-1/2u)
g'(x) = -1/8e^(-1/2u)
h'(x)=cos(u)
h(x)=sin(u)
=int1/2e^(-1/2u)*sin(u)du=-[1/2e^(-1/2u)cos(u)]-([1/4e^(-1/2u)sin(u)]+1/4int1/2e^(-1/2u)sin(u)du)
=int1/2e^(-1/2u)*sin(u) du=-[1/2e^(-1/2u)cos(u)]-[1/4e^(-1/2u)sin(u)]-1/4int1/2e^(-1/2u)sin(u)du
=4int1/2e^(-1/2u)*sin(u) du=-4[1/2e^(-1/2u)cos(u)]-4[1/4e^(-1/2u)sin(u)]-int1/2e^(-1/2u)sin(u)du
=4int1/2e^(-1/2u)*sin(u) du=-2[e^(-1/2u)cos(u)]-[e^(-1/2u)sin(u)]-int1/2e^(-1/2u)sin(u)du
=5int1/2e^(-1/2u)*sin(u) du=-2[e^(-1/2u)cos(u)]-[e^(-1/2u)sin(u)]
=int1/2e^(-1/2u)*sin(u) du=1/5(-2[e^(-1/2u)cos(u)]-[e^(-1/2u)sin(u)])
Substitute back : e^(-1/2u) = 1/x
So we have :
=(-1/(5x)(2cos(u)+sin(u)))+C