How do you integrate (1/x^2)(sin(2lnx)) dx (1x2)(sin(2lnx))dx?

1 Answer
Apr 11, 2015

f(x) = int1/x^2*sin(2ln(x))dxf(x)=1x2sin(2ln(x))dx

= 1/2int2/x^2*sin(2ln(x))dx=122x2sin(2ln(x))dx

u = 2ln(x)u=2ln(x) note u = ln(x^2)u=ln(x2)
du = 2/x dxdu=2xdx

= 1/2int2/x*1/x*sin(2ln(x))dx=122x1xsin(2ln(x))dx

=1/2int1/x*sin(u) du=121xsin(u)du

e^u = x^2eu=x2
e^(1/2u)=xe12u=x
e^(-1/2u) = 1/xe12u=1x

f(x)=int1/2e^(-1/2u)*sin(u) duf(x)=12e12usin(u)du

By part :

g(x) =1/2e^(-1/2u)g(x)=12e12u
g'(x)=-1/4e^(-1/2u)

h'(x)=sin(u)
h(x)=-cos(u)

int1/2e^(-1/2u)*sin(u) du=-[1/2e^(-1/2u)cos(u)]-int1/4e^(-1/2u)cos(u)du

by part again :

g(x) = 1/4e^(-1/2u)
g'(x) = -1/8e^(-1/2u)

h'(x)=cos(u)
h(x)=sin(u)

=int1/2e^(-1/2u)*sin(u)du=-[1/2e^(-1/2u)cos(u)]-([1/4e^(-1/2u)sin(u)]+1/4int1/2e^(-1/2u)sin(u)du)

=int1/2e^(-1/2u)*sin(u) du=-[1/2e^(-1/2u)cos(u)]-[1/4e^(-1/2u)sin(u)]-1/4int1/2e^(-1/2u)sin(u)du

=4int1/2e^(-1/2u)*sin(u) du=-4[1/2e^(-1/2u)cos(u)]-4[1/4e^(-1/2u)sin(u)]-int1/2e^(-1/2u)sin(u)du

=4int1/2e^(-1/2u)*sin(u) du=-2[e^(-1/2u)cos(u)]-[e^(-1/2u)sin(u)]-int1/2e^(-1/2u)sin(u)du

=5int1/2e^(-1/2u)*sin(u) du=-2[e^(-1/2u)cos(u)]-[e^(-1/2u)sin(u)]

=int1/2e^(-1/2u)*sin(u) du=1/5(-2[e^(-1/2u)cos(u)]-[e^(-1/2u)sin(u)])

Substitute back : e^(-1/2u) = 1/x

So we have :

=(-1/(5x)(2cos(u)+sin(u)))+C