How do you integrate 2ln(x5)?

1 Answer

2ln(x5)dx=(2x10)ln(x5)2x+C

Explanation:

The given

2ln(x5)dx

Let u=ln(x5)
Let dv=dx
Let v=x
Let du=(1x5)dx
Using integration by parts

udv=uvvdu

ln(x5)dx=xln(x5)xx5dx

ln(x5)dx=xln(x5)x5+5x5dx

ln(x5)dx=xln(x5)(1+5x5)dx

ln(x5)dx=xln(x5)x5ln(x5)

So that

2ln(x5)dx=2[xln(x5)x5ln(x5)]

2ln(x5)dx=2xln(x5)2x10ln(x5)+C

2ln(x5)dx=(2x10)ln(x5)2x+C

God bless....I hope the explanation is useful.