How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Sasha P. Sep 14, 2015 #-x^3/3+x^2/2-1/2lnabs(2x-1)+C# Explanation: We have to divide polinomials: #(2x^3-3x^2+x+1):(-2x+1)=-x^2+x# #-2x^3+x^2# #----# #-2x^2+x+1# #+2x^2-x# #----# #1# #(2x^3-3x^2+x+1)/(-2x+1)=-x^2+x+1/(-2x+1)# #int(2x^3-3x^2+x+1)/(-2x+1)dx=# #=int(-x^2+x+1/(-2x+1))dx=# #=-intx^2dx+intxdx-intdx/(2x-1)=I# #2x-1=t, 2dx=dt, dx=dt/2# #I=-x^3/3+x^2/2-intdt/2 1/t= # #=-x^3/3+x^2/2-1/2lnabs(2x-1)+C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? How do you find the integral of #(x^4+x-4) / (x^2+2)#? See all questions in Integrals of Rational Functions Impact of this question 7790 views around the world You can reuse this answer Creative Commons License