Prerequisite : The Rule of Integration by Parts (IBP) :
intuvdx=uintvdx-int{(du)/dxintvdx}dx∫uvdx=u∫vdx−∫{dudx∫vdx}dx.
Let, I=int(-3/x+lnx/x^3)dxI=∫(−3x+lnxx3)dx,
=-3int1/xdx+intlnx/x^3dx=−3∫1xdx+∫lnxx3dx,
=-3ln|x|+I_1," where, "I_1=intlnx/x^3dx=−3ln|x|+I1, where, I1=∫lnxx3dx.
For I_1I1, we use IBP with, u=lnx, and, v=1/x^3=x^-3u=lnx,and,v=1x3=x−3.
:. (du)/dx=1/x, and, intvdx=x^(-3+1)/(-3+1)=-1/(2x^2).
:. I_1=-lnx/(2x^2)-int{(1/x)(-1/(2x^2))}dx,
=-lnx/(2x^2)+1/2int1/x^3dx,
=-lnx/(2x^2)+1/2*x^(-3+1)/(-3+1),
=-lnx/(2x^2)-1/(4x^2).
rArr I=-3ln|x|-1/(4x^2)(2lnx+1)+C, or,
I=-3ln|x|-1/(4x^2)ln(ex^2)+C.
Feel & Spread the Joy of Maths.!