How do you integrate ∫3sin(ln(x))dx3sin(ln(x))dx?

1 Answer
Feb 21, 2015

Hello,

Answer. 3/2 x (sin(ln(x)) -cos(ln(x))) + c32x(sin(ln(x))cos(ln(x)))+c, where c in RR.

Use complex numbers.

int 3 sin(ln(x)) dx = 3 \mathfrak{Im} \int e^{i ln (x)} dx = 3 \mathfrak{Im}\int x^(i) dx.

But int x^(i) dx = x^(i+1)/(i+1) + c = x (e^(i ln(x))(1-i))/((1+i)(1-i)) + c = x/2 (e^(i ln(x))(1-i))

Now, you extract the imaginary part of e^(i ln(x))(1-i) :

e^(i ln(x))(1-i) = (cos(ln(x)) + i sin(ln(x)))(1-i)

e^(i ln(x))(1-i) = i(-cos(ln(x)) + sin(ln(x))) + \text{something real}

Therefore, mathfrak{Im}(e^(i ln(x))(1-i)) = -cos(ln(x)) + sin(ln(x)).

Conclusion.

int 3 sin(ln(x)) dx = 3 x/2(-cos(ln(x)) + sin(ln(x))).