How do you integrate 6x ln x dx ?

3 Answers
Apr 13, 2015

Integrate by parts.

int 6xln x dx

Let u = lnx so du = 1/x dx and

let dv = 6x dx to get v=3x^2

int udv = uv - int vdu

int 6xln x dx = 3x^2 lnx - int 3x^2 1/x dx

color(white)"ssssssssssss" = 3x^2 lnx - int 3x dx

color(white)"ssssssssssss" = 3x^2 lnx - 3/2 x^2 +C

Apr 13, 2015

The answer is: 3x^2lnx-3x^2/2+c.

This integral has to be done with the theorem of the integration by parts, that says:

intf(x)g'(x)dx=f(x)g(x)-intg(x)f'(x)dx

We can assume that f(x)=lnx and g'(x)dx=6xdx.

g(x)=6x^2/2=3x^2

f'(x)dx=1/xdx.

So:

int6xlnxdx=3x^2lnx-int3x^2*1/xdx=3x^2lnx-3intxdx=

=3x^2lnx-3x^2/2+c.

Apr 13, 2015

=3x^2lnx-1/4x^2+C

Detail

int6xlnxdx

=lnx(6(x)^2)/(2)-int(1)/(x).(6x^2)/(2)dx

=3x^2lnx-3intxdx

=3x^2lnx-3(x^2)/2+C

=3x^2lnx-3/2x^2+C