How do you integrate arctan(x)dx?

1 Answer
Jul 21, 2016

arctan(x)dx=(x+1)arctan(x)x+C

Explanation:

Making y=x we have

dy=12dxx=12dxy

arctan(x)dx2yarctan(y)dy

Now

ddy(y2arctan(y))=2yarctan(y)+y21+y2

but

y21+y2=111+y2

so

ddy(y2arctan(y))=2yarctan(y)+111+y2

Finally

2yarctan(y)dy=y2arctan(y)y+arctan(y)+C

or

arctan(x)dx=(x+1)arctan(x)x+C