How do you integrate by parts (xe4x)dx?

1 Answer
Aug 29, 2015

(xe4xdx)=116e4x(4x1)+c

Explanation:

Remember that the formula that allows you to integrate a function by parts looks like this

(udv)=uv(vdu) , where

u, v - are two functions of x;
du, dv - their derivatives.

So, you need to identify u and dv, then calculate du and v.

If you take u=x and dv=e4x, you will have

u=xdu=dx

and

dv=e4xv=(e4xdx)=14e4x

Your target integral will thus be

(xe4xdx)=x14e4x(14e4xdx)

(xe4xdx)=14xe4x1414e4x+c

(xe4xdx)=14e4x(x14)+c

(xe4xdx)=116e4x(4x1)+c