How do you integrate by parts (x⋅e4x)dx?
1 Answer
Aug 29, 2015
Explanation:
Remember that the formula that allows you to integrate a function by parts looks like this
∫(u⋅dv)=u⋅v−∫(v⋅du) , where
So, you need to identify
If you take
u=x⇒du=dx
and
dv=e4x⇒v=∫(e4xdx)=14⋅e4x
Your target integral will thus be
∫(x⋅e4xdx)=x⋅14⋅e4x−∫(14e4x⋅dx)
∫(x⋅e4xdx)=14⋅x⋅e4x−14⋅14⋅e4x+c
∫(x⋅e4xdx)=14e4x(x−14)+c
∫(x⋅e4xdx)=116⋅e4x⋅(4x−1)+c