How do you integrate by substitution int (9-y)sqrty dy(9y)ydy?

2 Answers
Mar 19, 2018

The answer is =6y^(3/2)-2/5y^(5/2)+C=6y3225y52+C

Explanation:

We need

intx^ndx=x^(n+1)/(n+1)+C(x!=-1)xndx=xn+1n+1+C(x1)

Let u=sqrtyu=y, =>, du=(dy)/(2sqrty)du=dy2y

Therefore,

int(9-y)sqrtydy=int(9-u^2)sqrty*2sqrtydu(9y)ydy=(9u2)y2ydu

=2int(9u^2-u^4)du=2(9u2u4)du

=2*9u^3/3-2/5u^5=29u3325u5

=6y^(3/2)-2/5y^(5/2)+C=6y3225y52+C

Mar 19, 2018

2/5y^(3/2)(15-y)+c25y32(15y)+c

Explanation:

I=int(9-y)sqrtydyI=(9y)ydy

to do this by substitution:

u=sqrty=>u=y^(1/2u=yu=y12

=>du=1/2y^(-1/2)dydu=12y12dy

dy=2y^(1/2)dudy=2y12du

I=int(9-u^2)y^(1/2)2y^(1/2)duI=(9u2)y122y12du

=int(9-u^2)ydu=(9u2)ydu

=2int(9-u^2)u^2du=2(9u2)u2du

=2int(9u^2-u^4)du=2(9u2u4)du

=2(3u^3-u^5/5)+c=2(3u3u55)+c

=2/5u^3(15-u^2)=c=25u3(15u2)=c

=2/5y^(3/2)(15-y)+c=25y32(15y)+c

note for this integral it would be more efficient to multiply the brackets out and integrate directly using the power rule

ie

int(9-y)y^(1/2)dy=int(9y^(1/2)-y^(3/2))dy(9y)y12dy=(9y12y32)dy

etc