How do you integrate by substitution int u^2sqrt(u^3+2)duu2u3+2du?

1 Answer
Nov 17, 2016

The answer is =2/9(u^3+2)^(3/2) +C=29(u3+2)32+C

Explanation:

We use intv^ndv=v^(n+1)/(n+1)+C (n!=-1)vndv=vn+1n+1+C(n1)

Let's do the substitution,

x=u^3+2x=u3+2

then, dx=3u^2dudx=3u2du =>u^2du=dx/3u2du=dx3

Therefore, intu^2sqrt(u^3+2)du=int(sqrtxdx)/3u2u3+2du=xdx3

int(x^(1/2)dx)/3=x^(3/2)/(3*3/2)+Cx12dx3=x32332+C

=2x^(3/2)/9+C=2x329+C

intu^2sqrt(u^3+2)du=2/9(u^3+2)^(3/2) +Cu2u3+2du=29(u3+2)32+C