How do you integrate by substitution int x^2(x^3+5)^4 dxx2(x3+5)4dx?

1 Answer
Oct 31, 2016

int x^2(x^3+5)^4 dx =(x^3+5 )^5/15+C x2(x3+5)4dx=(x3+5)515+C

Explanation:

We want to find I=int x^2(x^3+5)^4 dx I=x2(x3+5)4dx

Let u=x^3+5 => (du)/dx=3x^2 u=x3+5dudx=3x2, or 3x^2dx/(du)=13x2dxdu=1

We can then rewrite II as follows:

I=int x^2u^4 dx I=x2u4dx
:. I=1/3 int u^4 (3x^2)dx
:. I=1/3 int u^4 (3x^2)dx/(du)du (by the chain rule)

And using the above result we can now substitute to get:
I=1/3 int u^4 (1) du
:. I=1/3 int u^4 du
:. I=1/3 u^5/5+C
:. I=(x^3+5 )^5/15+C