How do you integrate cos(log(x))dx?

1 Answer
May 14, 2015

(I will assume logx is natural log. (If not, insert ln10 where needed.)

cos(log(x))dx=xcos(log(x))1xdx

Let u=x and dv is the rest of the integrand.
Now we can integrate v=cos(log(x))1xdx=sin(log(x))
(Use substitution with w=log(x))

Parts gives us:

cos(log(x))dx=xsin(log(x))sin(log(x))dx

Do the same trick again to get

cos(log(x))dx=xsin(log(x))+xcos(log(x))cos(log(x))dx

So

cos(log(x))dx=12(xsin(log(x))+xcos(log(x)))