How do you integrate e3x(e6x36)12dx?

1 Answer
Mar 15, 2015

The answer is: 13ln(e3x+e6x36)+c.

First of all I assume that there is an error in your writing: I think that e6x would be e6x.

Let's assume:

e3x=6cosht3x=ln6coshtx=13ln6cosht

dx=136sinht6coshtdt=13sinhtcoshtdt.

Our integral becomes:

6cosht36cosh2t3613sinhtcoshtdt=2sinht6cosh2t1dt=

=13sinhtsinhtdt=13dt=13t+c=(1).

Since e3x=6coshtcosht=e3x6t=arccosh(e3x6).

So:

(1)=13arccosh(e3x6)+c.

There is another way to write the solution, remembering the logarithmic expression of the function y=arccoshx, that is:

y=ln(x+x21).

So:

(1)=13ln(e3x6+e6x361)+c=

=13ln(e3x+e6x366)+c=

=13ln(e3x+e6x36)13ln6+c=

=13ln(e3x+e6x36)+c

because 13ln6 is a number.