How do you integrate e^(-a*x)cos(b*x)eaxcos(bx)?

1 Answer
Jul 12, 2016

=- e^(-ax)/(a^2+ b^2) qquad (a cos bx - b sin bx)

Explanation:

This is not IBP but gives an alternative more compact way of doing it

int dx qquad e^{-ax} cos bx

= mathcal(Re) int dx qquad e^{-ax} e^{ i bx}

= mathcal(Re) int dx qquad e^{(-a+ i b)x}

= mathcal(Re) qquad 1/(-a+ i b)e^{(-a+ i b)x}

= mathcal(Re) qquad -(a+ i b)/(a^2+ b^2)e^(-ax) e^{ i bx}

=- e^(-ax)/(a^2+ b^2) quad mathcal(Re) qquad (a+ i b)(cos bx + i sin bx)

=- e^(-ax)/(a^2+ b^2) qquad (a cos bx - b sin bx)