How do you integrate (e^x)sin4x dx(ex)sin4xdx?

1 Answer
Apr 29, 2015

This integral is a cyclic one and has to be done two times with the theorem of the integration by parts, that says:

intf(x)g'(x)dx=f(x)g(x)-intg(x)f'(x)dx

We can assume that f(x)=sin4x and g'(x)dx=e^xdx,

f'(x)dx=cos4x*4dx

g(x)=e^x,

so:

I=e^xsin4x-inte^xcos4x*4dx=

=e^xsin4x-4inte^xcos4xdx=(1).

And now...again:

f(x)=cos4x and g'(x)dx=e^xdx,

f'(x)dx=-sin4x*4dx

g(x)=e^x.

So:

(1)=e^xsin4x-4[e^xcos4x-inte^x(-sin4x*4)dx]=

=e^xsin4x-4e^xcos4x-16inte^xsin4xdx.

So, finally, we can write:

I=e^xsin4x-4e^xcos4x-16IrArr

17I=e^xsin4x-4e^xcos4xrArr

I=e^x/17(sin4x-4cos4x)+c.