How do you integrate #(e^x)/x#? Calculus Techniques of Integration Integration by Parts 1 Answer A. S. Adikesavan Feb 18, 2017 For# x > 0#, #inte^x/x dx # #=int (1+x+x^2/(2!)+x^3/(3!)+...)/x dx# #=C+lnx+x/(1!)+x^2/(2(2!))+x^3/(3(3!))+...+x^n/(n((n)!))+...# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 25965 views around the world You can reuse this answer Creative Commons License