How do you integrate f(x)=-2t^2+3t-6 using the power rule?

1 Answer
Jan 13, 2017

int (-2t^2+3t-6)dt =-2/3t^3+3/2t^2-6t+C

Explanation:

First we use the linearity of the integral:

int (-2t^2+3t-6)dt = -2int t^2dt +3int tdt -6int dt

Then the power rule states that:

d/(dt) t^n = nt^(n-1) <=> int t^ndt = t^(n+1)/(n+1) + C

So:

int t^2dt = t^3/3

int tdt = t^2/2

int dt = t

and putting it together:

int (-2t^2+3t-6)dt =-2/3t^3+3/2t^2-6t+C