How do you integrate ∫71√x⋅lnx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Andrea S. Dec 4, 2016 ∫71√xlnxdx=23√343(ln7−23)+49 Explanation: ∫71√xlnxdx=23∫71lnxd(x32) ∫71√xlnxdx=23(x32lnx)∣x=7x=1−23∫71x32d(lnx) ∫71√xlnxdx=23(x32lnx)∣x=7x=1−23∫71x32dxx ∫71√xlnxdx=23(x32lnx)∣x=7x=1−23∫71x12dx ∫71√xlnxdx=23x32(lnx−23)∣∣∣x=7x=1 ∫71√xlnxdx=23√343(ln7−23)+49 Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 1423 views around the world You can reuse this answer Creative Commons License