How do you integrate #int 1/(x^(3/2) + x^(1/2)) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Sep 29, 2016 #2arc tansqrtx+C.# Explanation: Let #I=int1/(x^(3/2)+x^(1/2))dx=int1/{sqrtx(x+1)}dx#. We take subst. #sqrtx=t, or, x=t^2 rArr dx=2tdt.# #:. I=int1/(t(t^2+1))2tdt=2int1/(t^2+1)dt=2arc tant# Hence, #I=2arc tansqrtx+C,# as Respected Eric Sia has derived! Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 20540 views around the world You can reuse this answer Creative Commons License