For a non-parts approach
I = int(2+sin(x/2))^2cos(x/2)dxI=∫(2+sin(x2))2cos(x2)dx
Expanding that
I = int(4+4sin(x/2)+sin^2(x/2))cos(x/2)dxI=∫(4+4sin(x2)+sin2(x2))cos(x2)dx
And that
I = int4cos(x/2)dx + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dxI=∫4cos(x2)dx+∫4sin(x2)cos(x2)dx+∫sin2(x2)cos(x2)dx
The first integral is easy
I = 8sin(x/2) + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dxI=8sin(x2)+∫4sin(x2)cos(x2)dx+∫sin2(x2)cos(x2)dx
The second is easy if you remember that
sin(alphax)cos(alphax) = sin(2alphax)/2sin(αx)cos(αx)=sin(2αx)2, so
I = 8sin(x/2) + int2sin(x)dx + intsin^2(x/2)cos(x/2)dxI=8sin(x2)+∫2sin(x)dx+∫sin2(x2)cos(x2)dx
I = 8sin(x/2) -2cos(x) + intsin^2(x/2)cos(x/2)dxI=8sin(x2)−2cos(x)+∫sin2(x2)cos(x2)dx
If you remember sin^2(theta) = 1 -cos^2(theta)sin2(θ)=1−cos2(θ)
I = 8sin(x/2) -2cos(x) + int(1 - cos^2(x/2))cos(x/2)dxI=8sin(x2)−2cos(x)+∫(1−cos2(x2))cos(x2)dx
I = 8sin(x/2) -2cos(x) + intcos(x/2)dx - intcos^3(x/2)dxI=8sin(x2)−2cos(x)+∫cos(x2)dx−∫cos3(x2)dx
I = 8sin(x/2) -2cos(x) + 2sin(x/2)- intcos^3(x/2)dxI=8sin(x2)−2cos(x)+2sin(x2)−∫cos3(x2)dx
And now, use cos^2(x/2) = 1 - sin^2(x/2)cos2(x2)=1−sin2(x2)
I = 10sin(x/2) -2cos(x) - int(1-sin^2(x/2))cos(x/2)dxI=10sin(x2)−2cos(x)−∫(1−sin2(x2))cos(x2)dx
Say u = sin(x/2)u=sin(x2) so du = cos(x/2)/2du=cos(x2)2
I = 10sin(x/2) -2cos(x) -2 int(1-sin^2(x/2))cos(x/2)/2dxI=10sin(x2)−2cos(x)−2∫(1−sin2(x2))cos(x2)2dx
I = 10sin(x/2) -2cos(x) -2 int(1-u^2)duI=10sin(x2)−2cos(x)−2∫(1−u2)du
I = 10sin(x/2) -2cos(x) -2u + (2u^3)/3 + cI=10sin(x2)−2cos(x)−2u+2u33+c
Switching it back to xx
I = 10sin(x/2) -2cos(x) -2sin(x/2) + 2/3sin^3(x/2) + cI=10sin(x2)−2cos(x)−2sin(x2)+23sin3(x2)+c