How do you integrate int (2+sin(x/2))^2 cos(x/2)dx(2+sin(x2))2cos(x2)dx using integration by parts?

1 Answer
Jan 9, 2016

I = 10sin(x/2) -2cos(x) -2sin(x/2) + 2/3sin^3(x/2) + cI=10sin(x2)2cos(x)2sin(x2)+23sin3(x2)+c

Explanation:

For a non-parts approach

I = int(2+sin(x/2))^2cos(x/2)dxI=(2+sin(x2))2cos(x2)dx

Expanding that

I = int(4+4sin(x/2)+sin^2(x/2))cos(x/2)dxI=(4+4sin(x2)+sin2(x2))cos(x2)dx

And that

I = int4cos(x/2)dx + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dxI=4cos(x2)dx+4sin(x2)cos(x2)dx+sin2(x2)cos(x2)dx

The first integral is easy

I = 8sin(x/2) + int4sin(x/2)cos(x/2)dx + intsin^2(x/2)cos(x/2)dxI=8sin(x2)+4sin(x2)cos(x2)dx+sin2(x2)cos(x2)dx

The second is easy if you remember that

sin(alphax)cos(alphax) = sin(2alphax)/2sin(αx)cos(αx)=sin(2αx)2, so

I = 8sin(x/2) + int2sin(x)dx + intsin^2(x/2)cos(x/2)dxI=8sin(x2)+2sin(x)dx+sin2(x2)cos(x2)dx
I = 8sin(x/2) -2cos(x) + intsin^2(x/2)cos(x/2)dxI=8sin(x2)2cos(x)+sin2(x2)cos(x2)dx

If you remember sin^2(theta) = 1 -cos^2(theta)sin2(θ)=1cos2(θ)

I = 8sin(x/2) -2cos(x) + int(1 - cos^2(x/2))cos(x/2)dxI=8sin(x2)2cos(x)+(1cos2(x2))cos(x2)dx
I = 8sin(x/2) -2cos(x) + intcos(x/2)dx - intcos^3(x/2)dxI=8sin(x2)2cos(x)+cos(x2)dxcos3(x2)dx
I = 8sin(x/2) -2cos(x) + 2sin(x/2)- intcos^3(x/2)dxI=8sin(x2)2cos(x)+2sin(x2)cos3(x2)dx

And now, use cos^2(x/2) = 1 - sin^2(x/2)cos2(x2)=1sin2(x2)

I = 10sin(x/2) -2cos(x) - int(1-sin^2(x/2))cos(x/2)dxI=10sin(x2)2cos(x)(1sin2(x2))cos(x2)dx

Say u = sin(x/2)u=sin(x2) so du = cos(x/2)/2du=cos(x2)2

I = 10sin(x/2) -2cos(x) -2 int(1-sin^2(x/2))cos(x/2)/2dxI=10sin(x2)2cos(x)2(1sin2(x2))cos(x2)2dx
I = 10sin(x/2) -2cos(x) -2 int(1-u^2)duI=10sin(x2)2cos(x)2(1u2)du
I = 10sin(x/2) -2cos(x) -2u + (2u^3)/3 + cI=10sin(x2)2cos(x)2u+2u33+c

Switching it back to xx

I = 10sin(x/2) -2cos(x) -2sin(x/2) + 2/3sin^3(x/2) + cI=10sin(x2)2cos(x)2sin(x2)+23sin3(x2)+c