Here,
I=int(3x)ln(2x)dxI=∫(3x)ln(2x)dx
"Using "color(blue)"Integration by Parts"Using Integration by Parts
color(red)(int(u*v)dx=uintvdx-int((du)/(dx)intvdx)dx∫(u⋅v)dx=u∫vdx−∫(dudx∫vdx)dx
Let, u=ln(2x)and v=3xu=ln(2x)andv=3x,we get
(du)/(dx)=1/(2x)*2=1/x and intvdx=(3x^2)/2dudx=12x⋅2=1xand∫vdx=3x22
=>I=ln(2x)(3x^2)/2-int(1/x(3x^2)/2)dx⇒I=ln(2x)3x22−∫(1x3x22)dx
=(3x^2)/2ln(2x)-3/2intxdx+c=3x22ln(2x)−32∫xdx+c
=(3x^2)/2ln(2x)-3/2*x^2/2+C=3x22ln(2x)−32⋅x22+C
=(3x^2)/4(2ln(2x)-1)+C=3x24(2ln(2x)−1)+C
=(3x^2)/4(ln(2x)^2-1)+C=3x24(ln(2x)2−1)+C
=(3x^2)/4(ln(2x)^2-1)+C=3x24(ln(2x)2−1)+C
=(3x^2)/4(ln(4x^2)-1)+C=3x24(ln(4x2)−1)+C