How do you integrate int( 3x ln(2x) dx}(3xln(2x)dx}?

1 Answer
Apr 10, 2018

I=(3x^2)/4(ln(4x^2)-1)+CI=3x24(ln(4x2)1)+C

Explanation:

Here,

I=int(3x)ln(2x)dxI=(3x)ln(2x)dx

"Using "color(blue)"Integration by Parts"Using Integration by Parts

color(red)(int(u*v)dx=uintvdx-int((du)/(dx)intvdx)dx(uv)dx=uvdx(dudxvdx)dx

Let, u=ln(2x)and v=3xu=ln(2x)andv=3x,we get

(du)/(dx)=1/(2x)*2=1/x and intvdx=(3x^2)/2dudx=12x2=1xandvdx=3x22

=>I=ln(2x)(3x^2)/2-int(1/x(3x^2)/2)dxI=ln(2x)3x22(1x3x22)dx

=(3x^2)/2ln(2x)-3/2intxdx+c=3x22ln(2x)32xdx+c

=(3x^2)/2ln(2x)-3/2*x^2/2+C=3x22ln(2x)32x22+C

=(3x^2)/4(2ln(2x)-1)+C=3x24(2ln(2x)1)+C

=(3x^2)/4(ln(2x)^2-1)+C=3x24(ln(2x)21)+C

=(3x^2)/4(ln(2x)^2-1)+C=3x24(ln(2x)21)+C

=(3x^2)/4(ln(4x^2)-1)+C=3x24(ln(4x2)1)+C