How do you integrate int 4 x^2 ln x^2 dx 4x2lnx2dx using integration by parts?

1 Answer
Apr 19, 2016

int4x^2ln(x^2)dx=(8x^3(3lnx-1))/9+C4x2ln(x2)dx=8x3(3lnx1)9+C

Explanation:

First, rewrite ln(x^2)=2lnxln(x2)=2lnx using the rule that ln(a^b)=b*lnaln(ab)=blna.

This gives us the integral int4x^2(2lnx)dx=8intx^2lnxdx4x2(2lnx)dx=8x2lnxdx.

For this, recalling that integration by parts takes the form intudv=uv-intvduudv=uvvdu, we let

u=lnx" "=>" "(du)/dx=1/xdx" "=>" "du=1/xdxu=lnx dudx=1xdx du=1xdx

dv=x^2dx" "=>" "intdv=intx^2dx" "=>" "v=x^3/3dv=x2dx dv=x2dx v=x33

This gives us:

8intx^2lnx=8[(x^3/3)lnx-intx^3/3(1/x)dx]8x2lnx=8[(x33)lnxx33(1x)dx]

=(8x^3lnx)/3-8intx^2/3dx=8x3lnx38x23dx

=(8x^3lnx)/3-(8x^3)/9+C=8x3lnx38x39+C

Which can also be written as

int4x^2ln(x^2)dx=(8x^3(3lnx-1))/9+C4x2ln(x2)dx=8x3(3lnx1)9+C