How do you integrate int arcsinxarcsinx by integration by parts method?

1 Answer
Sep 26, 2017

intsin^(-1)xdx=xsin^(-1)+(1-x^2)^(1/2)+Csin1xdx=xsin1+(1x2)12+C

Explanation:

IBP formula

I=intcolor(red)(u)v'dx=intcolor(red)(u)v-vcolor(red)(u')dx

we ahve

intsin^(-1)xdx

let" "color(red)( u=sin^(-1)x=>u'=1/sqrt(1-x^2))

v'=1=>v=x

I=xcolor(red)(sin^(-1)x)-intx/color(red)(sqrt(1-x^2))dx

now
intx/color(red)(sqrt(1-x^2))dx=intx(1-x^2)^(-1/2)dx

by inspection we have

=-(1-x^2)^(1/2)

this is left as an exercise for the reader to verify

finally we have

intsin^(-1)dx=xsin^(-1)+(1-x^2)^(1/2)+C