How do you integrate cos2x by integration by parts method?

1 Answer
Jan 23, 2017

x2+12sinxcosx+c

Explanation:

If you really want to integrate by parts, choose u=cosx, dv=cosxdv, du=sinxdx, v=sinx.

udv=uvvdu

cosxcosxdx=cosxsinxsinx(sinx)dx

cos2xdx=cosxsinx+(1cos2x)dx

cos2xdx=cosxsinx+1dxcos2xdx

Now for the sneaky part: take the integral on the right over to the left:

2cos2xdx=cosxsinx+x

Hence
cos2xdx=12x+12sinxcosx

However, a shorter way is to use the identities cos2x=cos2xsin2x=2cos2x1=12sin2x and sin2x=2sinxcosx.

cos2x=1+cos2x2dx

=12dx+12cos2xdx

=12x+12sin2x+c

=12x+sinxcosx+c