How do you integrate int cos(lne(x)) cos(lne(x)) using integration by parts?

1 Answer
May 19, 2018

intcos(ln(x))dx=x(cos(ln(x))-sin(ln(x)))/2+Ccos(ln(x))dx=xcos(ln(x))sin(ln(x))2+C, C in RR

Explanation:

intcos(ln(x))dx
let : X=ln(x)
x=e^X
dx=e^XdX
so :
intcos(ln(x))dx=intcos(X)e^XdX
Using integration by parts :
intuv'dX=uv-intu'vdX
there :
u=e^X v'=cos(X)

u'=e^X v=sin(X)

So : intcos(X)e^XdX=(-sin(X)e^X)-int(sin(X)e^X)dx

=-sin(X)e^X-intsin(X)e^XdX

Using integration by parts again :

intsin(X)e^XdX=-cos(X)e^X+int(cos(X)e^XdX

So :

intcos(X)e^XdX=-sin(X)e^X+cos(X)e^X-int(cos(X)e^XdX

2intcos(X)e^XdX=e^(X)(cos(X)-sin(X))

intcos(X)e^XdX=(e^(X)(cos(X)-sin(X)))/2+C, C in RR

intcos(ln(x))dx=cancel(e^(ln(x)))^(=x)(cos(ln(x))-sin(ln(x)))/2+C, C in RR

intcos(ln(x))dx=x*(cos(ln(x))-sin(ln(x)))/2+C, C in RR

\0/ here's our answer !