How do you integrate int cos2x*e^-xcos2xex by integration by parts method?

1 Answer
Nov 24, 2016

The answer is =(e^(-x)(2sin2x-cos2x))/5+C=ex(2sin2xcos2x)5+C

Explanation:

We use integration by parts

intu'v=uv-intuv'

v=cos2x =>, v'=-2sin2x

u'=e^(-x), =>, u=-e^(-x)

inte^(-x)*cos2xdx=-e^(-x)*cos2x-2inte^(-x)sin2xdx

We apply once more the integration by parts

v=sin2x, =>,v'=2cos2x

u'=e^(-x),=>u=-e^(-x)

so, 2inte^(-x)sin2xdx=-2e^(-x)sin2x+4inte^(-x)cos2xdx

So,

inte^(-x)*cos2xdx=-e^(-x)*cos2x-(-2e^(-x)sin2x+4inte^(-x)cos2xdx)

inte^(-x)*cos2xdx=

-e^(-x)*cos2x+2e^(-x)sin2x-4inte^(-x)cos2xdx

5inte^(-x)*cos2xdx=-e^(-x)*cos2x+2e^(-x)sin2x

inte^(-x)*cos2xdx=(e^(-x)(2sin2x-cos2x))/5+C