How do you integrate int cossqrtx∫cos√x using integration by parts?
1 Answer
Oct 27, 2016
Explanation:
I=intcos(sqrtx)dxI=∫cos(√x)dx
We will first use the substitution
I=intcos(t)(2tdt)=2inttcos(t)dtI=∫cos(t)(2tdt)=2∫tcos(t)dt
We should now use integration by parts, which takes the form
{(u=t" "=>" "du=dt),(dv=cos(t)dt" "=>" "v=sin(t)):}
So:
I=2[tsin(t)-intsin(t)dt]
Since
I=2[tsin(t)+cos(t)]+C
Since
I=2sqrtxsin(sqrtx)+2cos(sqrtx)+C