How do you integrate int cossqrtxcosx using integration by parts?

1 Answer
Oct 27, 2016

intcos(sqrtx)dx=2sqrtxsin(sqrtx)+2cos(sqrtx)+Ccos(x)dx=2xsin(x)+2cos(x)+C

Explanation:

I=intcos(sqrtx)dxI=cos(x)dx

We will first use the substitution t=sqrtxt=x. This implies that t^2=xt2=x, which we differentiate to see that 2tdt=dx2tdt=dx. Thus:

I=intcos(t)(2tdt)=2inttcos(t)dtI=cos(t)(2tdt)=2tcos(t)dt

We should now use integration by parts, which takes the form intudv=uv-intvduudv=uvvdu. For the integral inttcos(t)dttcos(t)dt, let:

{(u=t" "=>" "du=dt),(dv=cos(t)dt" "=>" "v=sin(t)):}

So:

I=2[tsin(t)-intsin(t)dt]

Since intsin(t)=-cos(t)+C:

I=2[tsin(t)+cos(t)]+C

Since t=sqrtx:

I=2sqrtxsin(sqrtx)+2cos(sqrtx)+C