How do you integrate ex4ex using substitution?

2 Answers
Oct 25, 2016

ln|4ex|+C

Explanation:

ex4exdx

Let u=4ex. Differentiating this shows that du=exdx. Thus:

ex4exdx=exdx4ex=duu

This is a common integral:

=duu=ln|u|+C=ln|4ex|+C

Oct 25, 2016

=ln(4ex)+C

Explanation:

Use the substitution u=4ex
Then du=exdx

So exdx4ex=duu

=lnu

ln(4ex)+C