How do you integrate int e^x sin x ^2 dx using integration by parts?

1 Answer
Apr 11, 2017

If this is what you meant, then:

inte^xsin^2(x)dx=1/2e^x-1/10e^xcos(2x)-1/5e^xsin(2x)+C

Explanation:

If you meant inte^xsin^2(x)dx, then this can be integrated.

We have to use the identity sin^2(x)=1/2(1-cos(2x)). The integral is then equal to:

I=inte^xsin^2(x)dx=inte^x(1/2(1-cos(2x)))dx

color(white)I=1/2inte^xdx-1/2inte^xcos(2x)dx

The first integral is elementary. We'll call the second one J and find it by itself:

I=1/2e^x-1/2J

For J=inte^xcos(2x)dx, we should use integration by parts. Let:

{(u=cos(2x),=>,du=-2sin(2x)dx),(dv=e^xdx,=>,v=e^x):}

So:

J=e^xcos(2x)+int2e^xsin(2x)dx

Perform integration by parts again.

{(u=2sin(2x),=>,du=4cos(2x)dx),(dv=e^xdx,=>,v=e^x):}

Then:

J=e^xcos(2x)+2e^xsin(2x)-4inte^xcos(2x)dx

Notice that J has reappeared on the right-hand side. We can add 4J to both sides of the equation and then solve for J:

5J=e^xcos(2x)+2e^xsin(2x)

J=1/5e^xcos(2x)+2/5e^xsin(2x)

Returning to our original expression:

I=1/2e^x-1/2J

color(white)I=1/2e^x-1/2(1/5e^xcos(2x)+2/5e^xsin(2x))

color(white)I=1/2e^x-1/10e^xcos(2x)-1/5e^xsin(2x)+C