If you meant inte^xsin^2(x)dx, then this can be integrated.
We have to use the identity sin^2(x)=1/2(1-cos(2x)). The integral is then equal to:
I=inte^xsin^2(x)dx=inte^x(1/2(1-cos(2x)))dx
color(white)I=1/2inte^xdx-1/2inte^xcos(2x)dx
The first integral is elementary. We'll call the second one J and find it by itself:
I=1/2e^x-1/2J
For J=inte^xcos(2x)dx, we should use integration by parts. Let:
{(u=cos(2x),=>,du=-2sin(2x)dx),(dv=e^xdx,=>,v=e^x):}
So:
J=e^xcos(2x)+int2e^xsin(2x)dx
Perform integration by parts again.
{(u=2sin(2x),=>,du=4cos(2x)dx),(dv=e^xdx,=>,v=e^x):}
Then:
J=e^xcos(2x)+2e^xsin(2x)-4inte^xcos(2x)dx
Notice that J has reappeared on the right-hand side. We can add 4J to both sides of the equation and then solve for J:
5J=e^xcos(2x)+2e^xsin(2x)
J=1/5e^xcos(2x)+2/5e^xsin(2x)
Returning to our original expression:
I=1/2e^x-1/2J
color(white)I=1/2e^x-1/2(1/5e^xcos(2x)+2/5e^xsin(2x))
color(white)I=1/2e^x-1/10e^xcos(2x)-1/5e^xsin(2x)+C