How do you integrate int e^x tan x dx extanxdx using integration by parts?

1 Answer
Apr 25, 2016

\tan(x) = -i \frac{1-e^{-2ix}}{1+e^{-2ix}} = -i - 2 i \sum_{k=1}^\infty (-1)^k e^{-2ikx}tan(x)=i1e2ix1+e2ix=i2ik=1(1)ke2ikx
\int e^x \tan(x)\ dx = -i e^x - 2 i \sum_{k=1}^\infty (-1)^k \int e^{(1-2ik)x}\ dx
= -i e^x -2i \sum_{k=1}^\infty \frac{(-1)^k}{1-2ik} e^{(1-2ik)x} + C
that involves the Lerch Phi function