How do you integrate int e^x tan x dx ∫extanxdx using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer t0hierry Apr 25, 2016 \tan(x) = -i \frac{1-e^{-2ix}}{1+e^{-2ix}} = -i - 2 i \sum_{k=1}^\infty (-1)^k e^{-2ikx}tan(x)=−i1−e−2ix1+e−2ix=−i−2i∞∑k=1(−1)ke−2ikx \int e^x \tan(x)\ dx = -i e^x - 2 i \sum_{k=1}^\infty (-1)^k \int e^{(1-2ik)x}\ dx = -i e^x -2i \sum_{k=1}^\infty \frac{(-1)^k}{1-2ik} e^{(1-2ik)x} + C that involves the Lerch Phi function Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 14383 views around the world You can reuse this answer Creative Commons License