How do you integrate int e^-xcosxexcosx by parts from [0,2][0,2]?

1 Answer
Mar 25, 2018

int_0^2e^-xcosxdx=1/2(e^-xsinx-e^-xcosx)|_0^2=1/2(e^-2sin2-e^-2cos2+1)20excosxdx=12(exsinxexcosx)20=12(e2sin2e2cos2+1)

Explanation:

Let's pick u, dvu,dv and solve for v, du:v,du:

u=e^-xu=ex

du=-e^-xdxdu=exdx

dv=cosxdxdv=cosxdx

v=sinxv=sinx

Thus, we apply intudv=uv-intvduudv=uvvdu:

inte^-xcosxdx=e^-xsinx+inte^-xsinxdxexcosxdx=exsinx+exsinxdx

This didn't yield anything solvable, let's integrate by parts once more, for inte^-xsinxdxexsinxdx:

u=e^-xu=ex

du=-e^-xdxdu=exdx

dv=sinxdxdv=sinxdx

v=-cosxv=cosx

Applying the integration by parts formula, we get

inte^-xsinxdx=-e^-xcosx-inte^-xcosxdxexsinxdx=excosxexcosxdx

There's nothing here we can solve, but note how our original integral showed up again.

Now, we said

inte^-xcosxdx=e^-xsinx+inte^-xsinxdxexcosxdx=exsinx+exsinxdx

So, let's plug in what we got for inte^-xsinxdxexsinxdx in:

inte^-xcosxdx=e^-xsinx-e^-xcosx-inte^-xcosxdxexcosxdx=exsinxexcosxexcosxdx

Solve for inte^-xcosxdx:excosxdx:

2inte^-xcosxdx=e^-xsinx-e^-xcosx2excosxdx=exsinxexcosx

inte^-xcosxdx=1/2(e^-xsinx-e^-xcosx)excosxdx=12(exsinxexcosx)

Note I have not put in a constant of integration because we're going to be taking a definite integral:

int_0^2e^-xcosxdx=1/2(e^-xsinx-e^-xcosx)|_0^2=1/2(e^-2sin2-e^-2cos2+1)20excosxdx=12(exsinxexcosx)20=12(e2sin2e2cos2+1)