How do you integrate ∫exex using substitution?
1 Answer
Nov 20, 2016
∫exexdx
Method 1 - Immediate Substitution
Make the substitution
∫exexdx=∫(ex)(exdx)=∫udu=u22=(ex)22=e2x2+C
Method 2 - Simplification, then Substitution
Use the rule
∫exexdx=∫e2xdx
Now substitute
∫e2xdx=12∫(e2x)(2dx)=12∫eudu
Since
12∫eudu=12eu=eu2=e2x2+C