How do you integrate int ln(1+x^2) by parts from [0,1]?

1 Answer
Feb 14, 2017

int_0^1 ln(1+x^2) dx =ln2 -2 +pi/2

Explanation:

We can take x as finite part:

int_0^1 ln(1+x^2) dx = [xln(1+x^2)]_0^1 - int_0^1 x d(ln(1+x^2))

(1) int_0^1 ln(1+x^2) dx =ln2 - 2int_0^1 (x^2dx)/(1+x^2)

Now solving the resulting integral:

int_0^1 (x^2dx)/(1+x^2) = int_0^1 (x^2+1-1)/(1+x^2)dx

int_0^1 (x^2dx)/(1+x^2) = int_0^1 (1-1/(1+x^2))dx

int_0^1 (x^2dx)/(1+x^2) = int_0^1 dx - int_0^1 dx/(1+x^2)

int_0^1 (x^2dx)/(1+x^2) = [x]_0^1-[arctanx]_0^1

int_0^1 (x^2dx)/(1+x^2) = 1-pi/4

Substitute in (1):

int_0^1 ln(1+x^2) dx =ln2 -2 +pi/2