How do you integrate int ln(x+1) by integration by parts method?

1 Answer
Oct 19, 2016

using intln(x+1)dx=int(1xxln(x+1))dx

and then putting
u=ln(x+1) & (dv)/dx=1

we end up with the result:

I=(x+1)ln(x+1)-x+C

Explanation:

Integration by parts formula:

intu((dv)/dx)dx=uv-intv((du)/dx)dx

writeintln(x+1)dx=int(1xxln(x+1))dx

with intergation by parts it is usual to put u=lnf(x)

Let u=ln(x+1)=>(du)/dx=1/(x+1)

Let(dv)/dx=1=>v=x

intu((dv)/dx)dx=xln(x+1)-int(x/(x+1))dx

on spliting the improper fraction in the integral we have:

intu((dv)/dx)dx=xln(x+1)-int(1-1/(x+1))dx

integrating:

intu((dv)/dx)dx=xln(x+1)-x+ln(x+1) +C

which simplifies to:

=(x+1)ln(x+1)-x+C