How do you integrate int ln x^2 dx lnx2dx using integration by parts?

1 Answer

int ln x^2 dx=x* ln x^2 - 2x + Clnx2dx=xlnx22x+C

Explanation:

The formula int u *dv= u*v-int v* duudv=uvvdu

the given int ln x^2 dxlnx2dx
Let u=ln x^2u=lnx2
dv =dxdv=dx

v=xv=x

du=2x*dx/x^2=2* dx/xdu=2xdxx2=2dxx

int ln x^2 dx=x*ln x^2 - int x*2*dx/x+Clnx2dx=xlnx2x2dxx+C

int ln x^2 dx=x*ln x^2 - int 2*dx+Clnx2dx=xlnx22dx+C

int ln x^2 dx=x* ln x^2 - 2x + Clnx2dx=xlnx22x+C