How do you integrate int (lnx)^2(lnx)2 by parts?

2 Answers
Dec 21, 2016

The answer is =x((lnx)^2-2lnx+2)+C=x((lnx)22lnx+2)+C

Explanation:

The integration by parts is

intu'vdx=uv-intuv'dx

Let v=(lnx)^2, =>, v'=(2lnx)/x

u'=1, =>, u=x

Therefore,

int(lnx)^2dx=x(lnx)^2-2intlnxdx

We do theintegration by parts a second time

Let v=lnx, =>, v'=1/x

u'=1, =>, u=x

intlnxdx=xlnx-intx*1/x*dx

=xlnx-x

Therefore,

int(lnx)^2dx=x(lnx)^2-2(xlnx-x) +C

=x(lnx)^2-2xlnx+2x+C

Dec 21, 2016

int (lnx)^2dx = x(ln^2x-2lnx+2)+C

Explanation:

The formula for integration by parts states that:

int u*dv = u*v -int v*du

In this case we take u(x) = (lnx)^2 and v(x) = x, so that:

int (lnx)^2dx = x(lnx)^2-int 2xlnx(1/x)dx= x(lnx)^2-2int lnxdx

We solve this last integral again by parts:

int lnx = xlnx - int x*(1/x)dx = xlnx -int dx = xlnx -x+C

Plugging this in the previous result:

int (lnx)^2dx = x(lnx)^2-2xlnx+2x+C= x(ln^2x-2lnx+2)+C