How do you integrate int re^(r/2)rer2 by integration by parts method?

1 Answer
Oct 20, 2016

intre^(r/2)dr=(2r-4)e^(r/2)+Crer2dr=(2r4)er2+C

Explanation:

Let u=ru=r then u'=1
and v'=e^(r/2) then v=2e^(r/2)
intuv'=uv-intu'v
so intre^(r/2)dr=2re^(r/2)-int2e^(r/2)dr
=2re^(r/2)-2*2e^(r/2)
=2re^(r/2)-4e^(r/2)+C
=(2r-4)e^(r/2)+C