How do you integrate int re^(r/2)∫rer2 by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Narad T. Oct 20, 2016 intre^(r/2)dr=(2r-4)e^(r/2)+C∫rer2dr=(2r−4)er2+C Explanation: Let u=ru=r then u'=1 and v'=e^(r/2) then v=2e^(r/2) intuv'=uv-intu'v so intre^(r/2)dr=2re^(r/2)-int2e^(r/2)dr =2re^(r/2)-2*2e^(r/2) =2re^(r/2)-4e^(r/2)+C =(2r-4)e^(r/2)+C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 7345 views around the world You can reuse this answer Creative Commons License