How do you integrate int (sin^-1x)^2∫(sin−1x)2 using integration by parts?
1 Answer
Explanation:
We have:
I=int(sin^-1x)^2dxI=∫(sin−1x)2dx
Integration by parts takes the form
Whatever value of
So, we have:
{(u=(sin^-1x)^2),(dv=dx):}
Take the derivative of
{(u=(sin^-1x)^2,=>,du=(2sin^-1x)/sqrt(1-x^2)dx),(dv=dx,=>,v=x):}
So we see that:
I=uv-intvdu=x(sin^-1x)^2-intx((2sin^-1x)/sqrt(1-x^2)dx)
Or:
I=x(sin^-1x)^2-2int(xsin^-1x)/sqrt(1-x^2)dx
We now have another integral to use integration by parts on. Again, don't choose
{(u=sin^-1x),(dv=x/sqrt(1-x^2)dx):}
Now differentiate and integrate, respectively. Note that
{(u=sin^-1x,=>,du=1/sqrt(1-x^2)dx),(dv=x/sqrt(1-x^2)dx,=>,v=-sqrt(1-x^2)):}
Then:
I=x(sin^-1x)^2-2[uv-intvdu]
I=x(sin^-1x)^2-2uv+2intvdu
I=x(sin^-1x)^2-2sin^-1x(-sqrt(1-x^2))+2int(-sqrt(1-x^2))/sqrt(1-x^2)dx
I=x(sin^-1x)^2+2sqrt(1-x^2)sin^-1x-2intdx
I=x(sin^-1x)^2+2sqrt(1-x^2)sin^-1x-2x+C