How do you integrate int sin(lnx) dxsin(lnx)dx?

1 Answer
Aug 7, 2018

intsin(lnx)dx=x/2[sin(lnx)-cos(lnx)]+Csin(lnx)dx=x2[sin(lnx)cos(lnx)]+C

Explanation:

Here,

I=intsin(lnx)dx.................(A)

Subst. color(red)(lnx=u=>x=e^u=>dx=e^udu

:.I=intsinu*e^udu

Using Integration by parts:

I=sinuinte^udu-int(d/(du)(sinu)inte^udu)du

:.I=sinuxxe^u-intcosue^udu

Again using Integration by parts:

I=e^usinu-{cosuxxe^u-int(-sinue^u)du}

:.I=e^usinu-e^ucosu-inte^usinudu+c

I=e^usinu-e^ucosu-I+c.tofrom(A)

:.I+I=e^usinu-e^ucosu+c

:.2I=e^usinu-e^ucosu+c

:.I=1/2[e^usinu-e^ucosu]+c/2

Subst.back color(red)(lnx=u=>x=e^u

intsin(lnx)dx=1/2[x*sin(lnx)-xcos(lnx)]+C

Hence ,

intsin(lnx)dx=x/2[sin(lnx)-cos(lnx)]+C