How do you integrate sin(lnx) using integration by parts?

1 Answer
Nov 3, 2015

12([xsin(ln(x))][xcos(ln(x))])

Explanation:

sin(ln(x))dx

Let's u=ln(x)

du=dxx

dx=xdu

x=eu

then

eusin(u)du

By part : dv=eu;v=eu;w=sin(u);dw=cos(u)

[vw]dwv

eusin(u)du=[eusin(u)]eucos(u)du

By part again

dv=eu;v=eu;w=cos(u);dw=sin(u)

eusin(u)du=[eusin(u)]([eucos(u)]+eusin(u)du)

eusin(u)du=[eusin(u)][eucos(u)]eusin(u)du

2eusin(u)du=[eusin(u)][eucos(u)]

eusin(u)du=12([eusin(u)][eucos(u)])

Substitute back for u=ln(x)

sin(ln(x))dx=12([xsin(ln(x))][xcos(ln(x))])