How do you integrate int sin(sqrtx)sin(x) by integration by parts method?

1 Answer
Sep 2, 2016

2sin(sqrt(x))-2 sqrt(x) cos(sqrt(x))+C2sin(x)2xcos(x)+C

Explanation:

Making x = y^2x=y2 in int sin(sqrtx)dxsin(x)dx

after dx = 2 y dydx=2ydy we have

int sin(sqrtx)dx equiv 2inty sin y dysin(x)dx2ysinydy

but d/(dy)(y cos y) = cosy -y sin yddy(ycosy)=cosyysiny so

2inty sin y dy=2int cos y dy -2y cos y = 2sin y -2y cos y + C2ysinydy=2cosydy2ycosy=2siny2ycosy+C

Finally

int sin(sqrtx)dx = 2sin(sqrt(x))-2 sqrt(x) cos(sqrt(x))+Csin(x)dx=2sin(x)2xcos(x)+C