How do you integrate int sinx*e^-x by integration by parts method?

1 Answer
May 25, 2018

int sinx e^(-x) dx = -(e^(-x)(sinx +cosx ))/2+ C

Explanation:

Integrate by parts:

int sinx e^(-x) dx = int sinx d/dx(-e^(-x)) dx

int sinx e^(-x) dx = -e^(-x)sinx + int e^(-x) d/dx(sinx ) dx

int sinx e^(-x) dx = -e^(-x)sinx + int e^(-x) cosx dx

and then again:

int sinx e^(-x) dx = -e^(-x)sinx + int cosx d/dx (-e^(-x))dx

int sinx e^(-x) dx = -e^(-x)sinx -e^(-x)cosx + int e^(-x) d/dx(cosx )dx

int sinx e^(-x) dx = -e^(-x)sinx -e^(-x)cosx - int sinx e^(-x) dx

The same integral appears on both sides and we can solve fro it:

2int sinx e^(-x) dx = -e^(-x)sinx -e^(-x)cosx + C

int sinx e^(-x) dx = -(e^(-x)(sinx +cosx ))/2+ C