Integrate by parts:
int sinx e^(-x) dx = int sinx d/dx(-e^(-x)) dx
int sinx e^(-x) dx = -e^(-x)sinx + int e^(-x) d/dx(sinx ) dx
int sinx e^(-x) dx = -e^(-x)sinx + int e^(-x) cosx dx
and then again:
int sinx e^(-x) dx = -e^(-x)sinx + int cosx d/dx (-e^(-x))dx
int sinx e^(-x) dx = -e^(-x)sinx -e^(-x)cosx + int e^(-x) d/dx(cosx )dx
int sinx e^(-x) dx = -e^(-x)sinx -e^(-x)cosx - int sinx e^(-x) dx
The same integral appears on both sides and we can solve fro it:
2int sinx e^(-x) dx = -e^(-x)sinx -e^(-x)cosx + C
int sinx e^(-x) dx = -(e^(-x)(sinx +cosx ))/2+ C