How do you integrate int sinxln(cosx) by integration by parts method? Calculus Techniques of Integration Integration by Parts 1 Answer Cesareo R. Aug 11, 2016 -cos(x)loge(cos(x))+cos(x) + C Explanation: d/(dx)(cos(x)log_e(cos(x)))=-sin(x) log_e(cos(x))-sin(x) so int sin(x) log_e(cos(x))dx = = -int d/(dx)(cos(x)log_e(cos(x)))dx-int sin(x) dx = = -cos(x)loge(cos(x))+cos(x) + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1488 views around the world You can reuse this answer Creative Commons License