How do you integrate int sqrt(4-sqrtx) using substitution?

2 Answers
Mar 28, 2018

intsqrt(4-sqrtx)dx=-16/3(4-sqrtx)^(3/2)+4/5(4-sqrtx)^(5/2)+C

Explanation:

Let u=4-sqrt(x)

Solving for sqrtx yields

sqrtx=4-u

And,

du=-1/(2sqrtx)dx

Initially, it does not seem like du shows up in the integral at all. But with some manipulation and simplification, this substitution becomes valid:

-2sqrtxdu=dx

-2(4-u)du=dx

Thus, our integral becomes

intsqrt(u)(-2)(4-u)du

-2intu^(1/2)(4-u)du

-2int(4u^(1/2)-u^(3/2))du=-2((4)(2/3)u^(3/2)-2/5u^(5/2))+C=-2(8/3u^(3/2)-2/5u^(5/2))+C=-16/3u^(3/2)+4/5u^(5/2)+C

Rewriting in terms of x yields

intsqrt(4-sqrtx)dx=-16/3(4-sqrtx)^(3/2)+4/5(4-sqrtx)^(5/2)+C

Mar 28, 2018

Look to explanation

Explanation:

Notice how you can use a whole integrand substitution
u=\sqrt{4-\sqrt{x}}\tox=(4-u^2)^2
And we notice that
dx=-4u(4-u^2) du
So therefore we see that
\int\sqrt{4-\sqrt{x}}dx=\int u\cdot(-4u(4-u^2))du
This can be simplified to
\int4u^4-16u^2 du=4/5u^5-16/3u^3+C
And then you need to substitute the value of u to obtain
\int\sqrt{4-\sqrt{x}}dx=4/5(\sqrt{4-\sqrt{x}})^5-16/3(\sqrt{4-\sqrt{x}})^3+C