How do you integrate int sqrt(4x-5)dx4x5dx using substitution?

1 Answer
Jul 18, 2016

Let u = 4x - 5u=4x5, then (du)/dx = 4 ->dx = (du)/4dudx=4dx=du4

=1/4int(sqrt(u))=14(u)

=1/4(u^(1/2 + 1)/(1/2 + 1)) + C=14(u12+112+1)+C

=1/4(2/3u^(3/2)) + C=14(23u32)+C

=1/4(2/3(4x -5)^(3/2)) + C=14(23(4x5)32)+C

=1/6(4x - 5)^(3/2) + C=16(4x5)32+C

Hopefully this helps!