How do you integrate int sqrtx ln 2xdxxln2xdx?

1 Answer
Apr 12, 2015

By part :

du = sqrt(x) du=x
u = 2/3sqrt(x^3)u=23x3

v = ln(2x)v=ln(2x)
dv = 1/xdv=1x

=[2/3sqrt(x^3)*ln(2x)]-2/3intsqrt(x^3)/xdx=[23x3ln(2x)]23x3xdx

Note : sqrt(x^3)/x = x^(3/2-1)=x^(1/2) = sqrt(x)x3x=x321=x12=x

Finally we have :

=[2/3sqrt(x^3)*ln(2x)]-4/9[sqrt(x^3)]+C=[23x3ln(2x)]49[x3]+C

=2/9sqrt(x^3)(3ln(2x)-2)+C=29x3(3ln(2x)2)+C