First, rewrite the integral:
color(white)=int t^2(t^3+4)^(-1/2)dt=∫t2(t3+4)−12dt
=int t^2/(t^3+4)^(1/2)dt=∫t2(t3+4)12dt
=int t^2/sqrt(t^3+4)dt=∫t2√t3+4dt
Now, let:
u=t^3+4quadcolor(blue)=>quaddu=3t^2dtquadcolor(blue)=>quaddt=(du)/(3t^2)
Substituting:
=int t^2/sqrt(u)*(du)/(3t^2)
=int color(red)cancelcolor(black)(t^2)/sqrt(u)*(du)/(3color(reD)cancelcolor(black)(t^2))
=int 1/sqrt(u)*(du)/3
=1/3int1/sqrtudu
=1/3int1/u^(1/2)du
=1/3intu^(-1/2)du
Power rule:
=1/3*u^(-1/2+1)/(-1/2+1)
=1/3*u^(1/2)/(1/2)
=1/3*2*sqrtu
=2/3sqrtu
Put t^3+4 back in for u (and don't forget to add C):
=2/3sqrt(t^3+4)+C
That's it. Hope this helped!