How do you integrate int t^2(t^3+4)^(-1/2)t2(t3+4)12 using substitution?

1 Answer
Apr 3, 2018

The integral is 2/3sqrt(t^3+4)+C23t3+4+C

Explanation:

First, rewrite the integral:

color(white)=int t^2(t^3+4)^(-1/2)dt=t2(t3+4)12dt

=int t^2/(t^3+4)^(1/2)dt=t2(t3+4)12dt

=int t^2/sqrt(t^3+4)dt=t2t3+4dt

Now, let:

u=t^3+4quadcolor(blue)=>quaddu=3t^2dtquadcolor(blue)=>quaddt=(du)/(3t^2)

Substituting:

=int t^2/sqrt(u)*(du)/(3t^2)

=int color(red)cancelcolor(black)(t^2)/sqrt(u)*(du)/(3color(reD)cancelcolor(black)(t^2))

=int 1/sqrt(u)*(du)/3

=1/3int1/sqrtudu

=1/3int1/u^(1/2)du

=1/3intu^(-1/2)du

Power rule:

=1/3*u^(-1/2+1)/(-1/2+1)

=1/3*u^(1/2)/(1/2)

=1/3*2*sqrtu

=2/3sqrtu

Put t^3+4 back in for u (and don't forget to add C):

=2/3sqrt(t^3+4)+C

That's it. Hope this helped!