How do you integrate int tan^-1x by integration by parts method?

1 Answer
Oct 31, 2016

The integral =xarctanx-ln(1+x^2)/2+C

Explanation:

The integration by parts is intu'v=uv-intuv'
Here we have u'=1=>u=x
and v=arctanx=>v'=1/(1+x^2)
If v=arctanx=>x=tanv
So by differentiating, 1=(1/cos^2v)((dv)/dx)
v'=(dv)/dx=cos^2v=1/(1+x^2)

The integration
intarctanxdx=xarctanx-int(xdx)/(1+x^2)
int(xdx)/(1+x^2)=(1/2)int(2xdx)/(1+x^2)
Let u=1+x^2=>du=2xdx
int(2xdx)/(1+x^2)=int(du)/u=lnu
int(xdx)/(1+x^2)=1/2ln(1+x^2)

And finally intarctanxdx=xarctanx-ln(1+x^2)/2+C