How do you integrate int tan^3xsec^2x∫tan3xsec2x using substitution?
1 Answer
Mar 14, 2018
Use the substitution
Explanation:
Let
I=inttan^3xsec^2dxI=∫tan3xsec2dx
Apply the substitution
I=intu^3duI=∫u3du
Integrate directly:
I=1/4u^4+CI=14u4+C
Reverse the substitution:
I=1/4tan^4x+CI=14tan4x+C