How do you integrate #int tcosht# using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer sjc Jan 12, 2017 #tsinht-cosht+C# Explanation: It is important to know the IBP formula #I=intuv'dx=uv-intvu'dx# #I=inttcoshtdt# #u=t=>u'=1# #v'=cosht=>v=sinht# #I=tsinht-intsinhtdt# #I=tsinht-cosht+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 1984 views around the world You can reuse this answer Creative Commons License